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1 Introduction

Image processing, a traditionally engineering field, has attracted the atten-
tion of many mathematicians during the past two decades. From the vision
and cognitive science point of view, image processing is a basic tool used to
reconstruct the relative order, geometry, topology, patterns, and dynamics
of the 3-D world from 2-D images. Therefore, it cannot be merely a historic
coincidence that mathematics must meet image processing in this digital
technology era.

The role of mathematics is also determined by the broad range of appli-
cations of image processing in contemporary science and technology. These
include astronomy and aerospace exploration, medical imaging, molecular
imaging, computer graphics, human and machine vision, telecommunication,
auto-piloting, surveillance video, and biometric security identification (such
as fingerprints and face identification), etc. All these highly diversified dis-
ciplines have made it necessary to develop the common mathematical foun-
dation and frameworks for image analysis and processing. Mathematics at
all levels must be introduced to meet the crucial qualities demanded by this
new era - genericity, well-posedness, accuracy, and computational efficiency,
just to name a few. In return, image processing has created tremendous
opportunities for mathematical modeling, analysis, and computation.

In this article, we intend to give a broad picture of mathematical image
processing through one of the most recent and very successful approaches
- the variational PDE method. We first discuss two crucial ingredients for
image processing: image modeling or representation, and processor model-
ing. We then focus on the variational PDE method. The backbone of the
article consists of two major problems in image processing — inpainting and
segmentation, which we have personally worked on, but by no means do we
intend to have a comprehensive review of the entire field of image processing.

1.1 Image processing as an input-output system

Directly connected to image processing are the two dual fields in the contem-
porary computer science - computer vision and computer graphics. Vision
(whether machine or human) is to reconstruct the 3-D world from the ob-
served 2-D images, while graphics pursues the opposite direction in designing
suitable 2-D scene images to simulate our 3-D world. Image processing is the
crucial middle way connecting the two.



Most abstractly, image processing can be considered as an input-output
System

Qo — ‘Image Processor 7" —Q

Here 7 denotes a typical image processor, for example, denoising, deblurring,
segmentation, compression, or inpainting. The input data (o can represent
an observed or measured single image or image sequence, and the output
Q = (q1, e, - - ) contains all the targeted image features.

For example, the human vision system can be considered as a highly
involved multi-level image processor 7. @)y represents the image sequence
that is constantly projected onto the retina. The output vector () contains
all the major features that are important to our daily life, from the low-level
ones such as relative orders, shapes, and grouping rules, to high-level feature
parameters that help classify or identify various patterns and objects.

Listed in Table 1 are some typical image processing problems.

The two main ingredients of image processing are the input )y and the
processor 7. As a result, the two key issues that have been driving the entire
mainstream mathematical research on image processing are (a) the modeling
and representation of the input visual data @y, and (b) the modeling of the
processing operators 7. The two are independent but also closely connected
to each other by the universal rule in mathematics: the structure and per-
formance of an operator 7 is greatly influenced by how the input class of
functions are modeled or represented.

1.2 Image modeling and representation

To efficiently handle and process images, first we need to understand what
images really are mathematically and how to represent them. For example, is
it adequate to treat them as general L? functions, or a subset of L? with suit-
able regularity constraints? Among the various approaches, here we briefly
outline three major classes of image modeling and representation.
Random fields modeling. An observed image ug is modeled as the
sampling of a random field. For example, the Ising spin model in statistical
mechanics can be used to model binary images. More generally, images are
modeled by some Gibbs/Markovian random fields [29, 57]. The statistical
properties of the fields are often established through the filtering technique
and learning theory. Random field modeling is the most ideal approach
for describing natural images with rich texture patterns such as trees and



T Qo Q

denoising+deblurring | ug = Ku+n | clean & sharp u

inpainting Uo|o\p entire image u|q
segmentation U “objects”

[U,k, Qk], k= 1, 2...
scale-space U multiscale images

(U)\I,U)Q, )

motion estimation (u(l) u? .) optical flows
v (7,52, ..)

Table 1: Typical image processors and their inputs and outputs. The symbols
represent (1) K: a blurring kernel, and n: an additive noise, both assumed
to be linear for simplicity in the current paper; (2) ug: the given noisy or
blurred image; (3) Q: the entire image domain, and D: a subset where image
information is missing or unaccessible; (4) [ug, Qx]: ’s are the segmented
individual “objects,” while uy’s are their intensity values; (5) A;’s are different
scales, and u) can be roughly understood as the projection of the input image
at scale \; (6) u(()")’s denote the discrete sampling of a continuous “movie”
uo(x,t) (with some small time step h), 7(™’s are the estimated optical flows
(i.e. velocity fields) at each moment.

mountains.

Wavelets representation. Whether digitally or biologically, an image
is often acquired from the responses of a collection of micro sensors (or photo
receptors). During the past two decades, it has been gradually realized or
experimentally supported that such local responses can be well approximated
by wavelets. Wavelets as a new representation tool has revolutionized our
notion of images and their multiscale structures [25, 33]. The new JPEG2000
protocol and the successful compression of the FBI fingerprints database are
its two most influential applications. The theory is still being actively pushed
forward by the new generation of geometric wavelets such as curvelets [7] and
beamlets [42].



Regularity spaces. In the linear filtering theory of conventional dig-
ital image processing, an image u is considered to be in the Sobolev space
H'(Q). Sobolev model works well for homogeneous regions but is insufficient
as a global image model, since it “smears” the most important visual cue
- edges [34]. Two well known models have been introduced to legalize the
existence of edges. One is Mumford and Shah’s “object-edge” model [39],
and the other is Rudin, Osher, and Fatemi’s BV image model [43]. The
object-edge model assumes that an ideal image u consists of disjoint homo-
geneous object patches [ug, Q] with u, € H'(4) and regular boundaries
0, (characterized by the 1-dimensional Hausdorff measure). The BV image
model assumes that an ideal image has bounded total variation [, [Du|. All
these regularity based image models are generally applicable to images with
low texture patterns and without rapidly oscillatory components [36].

1.3 Modeling of image processors

How images are modeled and represented very much determines the way
we model image processors. We shall illustrate this viewpoint through the
example of denoising u = Tug: uy = u + n, assuming for simplicity that the
white noise n is additive and homogeneous, and there is no blurring involved.

When images are represented by wavelets, the denoising processor 7 is
in some sense “diagonalized,” and equivalent to a simple engineering on the
individual wavelet components. This is the celebrated results of Donoho and
Johnstone on the thresholding based denoising schemes [27].

Under the statistical /random field modeling of images, the denoising pro-
cessor T becomes the MAP (Mazimum A Posteriori) estimation. By Bayes’
formula, the posterior probability given an observation ug is

p(ulug) = p(ug|u)p(w)/p(uo)-

The denoising processor 7 is achieved by solving the MAP problem max p(u|uq).

Therefore, besides the random field image model p(u), it is also important
to know the mechanism by which ug is generated from the ideal image u (or
the so called generative data model). The two are crucial for successfully
carrying out Bayesian denoising.

Finally, if the ideal image u is modeled as an element in certain regular
function spaces such as H'(Q) or BV(Q), then the denoising processor T



can be realized by a variational optimization. For instance, by Rudin-Osher-
Fatemi’s BV image model, 7 is achieved by

1
min/ |Du| subject to —/(u—uo)de <o,

where the white noise is assumed to be well approximated by Gaussian
N(0,0%). This is the well known denoising model first proposed by Rudin,
Osher, and Fatemi, and belongs to the more general class of reqularized data
fitting models.

Like using different coordinate systems to describe a single physical ob-
ject, the different formulations of a same image processor are closely intercon-
nected. Again take denoising for example. It has been shown that the wavelet
technique is equivalent to an approximate optimal regularization in certain
Besov spaces [23]. On the other hand, Bayesian processing and the regularity
based variational approach can also be connected (at least formally) by the
Gibbs’ formula in statistical mechanics [30] (see the next section).

1.4 Variational PDE method

Having briefly introduced the general picture of mathematical image process-
ing, we now focus on the variational PDE method through two processors:
inpainting and segmentation.

For the history and a detailed description of the current developments of
the variational and PDE method in image and vision analysis, we refer to the
two special issues in IEEFE Trans. Image Processing [7(3), 1998] and J. Visual
Comm. Image Rep. [13(1/2), 2002], and also two recent monographs [2, 48].

In the variational or “energy” based models, nonlinear PDEs emerge as
one derives their formal Euler-Lagrange equations, or tries to locate the local
or global minima by the gradient descent method. Some of the PDEs can
be studied by the viscosity solution approach [24], while many others still
remain open to further theoretical investigation.

Compared with other approaches, the variational and PDE method has
remarkable advantages in both theory and computation. First, it allows
to directly handle and process visually important geometric features such as
gradients, tangents, curvatures, and level sets. It can also effectively simulate
several visually meaningful dynamic processes such as linear and nonlinear
diffusions, and the information transport mechanism. Secondly, in terms of
computation, it can profoundly benefit from the existing wealthy literature
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of numerical analysis and computational PDEs. For example, various well
designed shock capturing schemes in Computational Fluid Dynamics (CFD)
can be conveniently adapted to edge computation in images.

2 Variational Image Inpainting and Interpo-
lation

The word inpainting is an artistic synonym for image interpolation, as ini-
tially circulated among museum restoration artists who manually restore
cracked ancient paintings. The concept of digital inpainting was first in-
troduced into digital image processing in the paper by Bertalmio et al. [5].
Currently, digital inpainting techniques have found broad applications in
image processing, vision analysis, and digital technologies, such as image
restoration, disocclusion, perceptual image coding, zooming and image super-
resolution, error concealment in wireless image transmission, and so on [15,
16, 17, 18]. See for instance Figure 1 for the application in error concealment.

We now discuss the mathematical ideas and methodologies behind the
variational inpainting techniques. Throughout this section, v denotes the
original complete image on a 2-D domain €2, and u, the observed or measured
portion of u on a subdomain or general subset D, which can be either noisy
or blurry. The goal of inpainting is to recover u on the entire image domain
Q) as faithfully as possible from the available data uy on D.

2.1 From Shannon’s Theorem to variational inpainting

Interpolation is a classical topic in approximation theory, numerical analysis,
and signal and image processing. Successful interpolants include polynomi-
als, harmonic waves, radially symmetric functions, finite elements, splines,
wavelets, etc. Despite the diversity of the literature, there indeed exists
one most widely recognized result due to Shannon [50], known as Shannon’s
Sampling Theorem.

Theorem 1 (Shannon’s Theorem) If a signal u(t) is bandlimited within

(—w,w), m: o
u(t) = Z u (ng) sinc (%t - n) :



That is, if an analog signal u(¢) (with finite energy, or equivalently, in L?(IR))
does not contain any high frequencies, then it can be perfectly interpolated
from its properly sampled discrete sequence ug[n] = u(nm/w) (with w/m
known as the Nyquist frequency).

All interpolation problems share this “if-then” structure. “If” specifies
the space where the target signal u is to be looked for, while “then” gives
the reconstruction or interpolation procedure based on the discrete samples
(or more generally, any partial information about the signal).

Unfortunately, for most real applications in signal and image processing,
one cannot expect a closed-form formula as clean as Shannon’s. This is at
least due to two factors. First, signals like images are intrinsically not ban-
dlimited because of the presence of edges (or Heaviside type singularities)
for vision analysis and communication [34]. Secondly, for most real applica-
tions, the given incomplete data are often noisy and even blurred during the
imaging or transimission processes. Therefore, in the criterion of Shannon’s
Theorem, we are dealing with a class of “bad” signals u with “unreliable”
samples ug.

Naturally, for image inpainting, both the “if” and “then” statements in
Shannon’s Theorem need to be modeled carefully. It turns out that there are
two powerful and interdependent frameworks that can carry out this task:
one is the variational method, and the other, the Bayesian framework [29].

In the Bayesian approach, the “if”-statement specifies both the so-called
prior model and the data model. The prior model specifies how a prior:
images are distributed, or equivalently, which images occur more frequently
than the others. Probabilistically, it specifies the prior probability p(u).
Let ug denote the incomplete data that are observed, measured, or sam-
pled. Then the second part of “if” is to model how ug is generated from
u: u — uyg, or to specify the conditional probability p(ug|u). Finally, in the
Bayesian framework, Shannon’s “then”-statement is replaced by the Mazi-
mum A Posteriori (MAP) optimization:

max p(ulug) = p(uo|u)p(u)/p(uo), (1)

where we have spelled out Bayes’ formula. (It is also equivalent to maximiz-
ing the product of the prior model and data model, since the denominator is
a fixed normalization constant once vy is given.) To summarize, Bayesian in-
painting is to find the most probable image given its incomplete and possibly
distorted observation.



The variational approach resembles the Bayesian methodology, only now
everything is expressed deterministically. The Bayesian prior model p(u) be-
comes the specification of the regularity of an image v, while the data model
p(uglu) now measures how well the observation wug is fitted if the original
image is indeed u. Regularity is enforced through “energy” functionals, for

example, the Sobolev norm Eu] = / |Vu|?dz, the total variation model
0
of Rudin, Osher, and Fatemi [31, 43] FEfu] = / |Dul, and the Mumford-
0

Shah free-boundary model [39] E|u,I'] = / \Vul?dz + BH'(T'), with H*
o\r

denoting the 1-D Hausdorff measure. The quality of data fitting v — wg
is often judged by an error measure E[ug|u|. For instance, the least square
measure [51] prevails in the literature due to the genericity of Gaussian type

1
noises and the Central Limit Theorem: Elug|u| = 7] / (Tu—wug)*dx, where
D

D is the domain on which uy has been sampled or measured, |D| its area
or cardinality for the discrete case, and T denotes any linear or nonlinear
image processor (such as blurring and diffusion). In this variational setting,
Shannon’s “then”-statement becomes a constrained optimization problem:

min Efu] over allu: FEluplu] < o’

Here o2 denotes the variance of the white noise, which is assumed to be
known by proper statistical estimators. Equivalently, the model solves the
following unconstrained problem using Lagrange multiplier: A [9],

muin Elu] + AE[ug|ul. (2)

Generally, A expresses the balance between regularity and fitting. In sum-
mary, variational inpainting is to search for the most “regular” image that
best fits the given observation.

The Bayesian approach is more universal in the sense of allowing general
statistical prior and data models, and is powerful for restoring both artificial
images and natural images (or teztures). But the learning of the prior model
and the data model is usually quite expensive. The variational approach is
ideal for dealing with regularity and geometry, but tends to work best for
man-made indoor and outdoor scenes, or images with low textures. The two
approaches (1) and (2) can be at least formally unified under Gibbs’ formula
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in statistical mechanics [30]:

E[] X _ﬂ logp(')’ or p() X e_E[.]//B’ (3)

where 8 = kT is the product of the Boltzmann constant and temperature,
and o< means equality up to a multiplicative or additive constant. (However,
the definability of a rigorous probability measure over “all” images is highly
non-trivial because of the multi-scale nature of images. Recent efforts can
be found in Mumford and Gidas [38].)

2.2 Variational inpainting based on geometric image
models

In a typical image inpainting problem, uy denotes the observed or measured
incomplete portion of a clean “good” image v on the entire image domain
Q. A simplified but already very powerful data model in various digital
applications is blurring followed by noise degradation and spatial restriction:

uO‘D = (Ku+n)p,

where K is a continuous blurring kernel, often assumed to be linear or even
shift-invariant, and n, an additive white noise field assumed to be close to
Gaussian for simplicity. ug|q\p is missing or inaccessible. The goal of in-
painting is to reconstruct u as faithfully as possible from wug|,. The data
model is explicitly given by

Elug|lu, D] = |;ﬁ| /D(Ku — ug)?du. (4)

Therefore, from the variational point of view, the quality of an inpainting
model crucially depends on the prior model or the regularity energy FElu).

The TV prior model Efu] = / |Du| was first introduced into image

Q
processing by Rudin, Osher, Fatemi in [43]. Unlike the Sobolev image model
Esu] = / |Vu|?dz, the TV model legalizes one of the most important vision

Q
features — the “edges.” For example, for a cartoon image u showing the
night sky (v = 0) with a full bright moon (u = 1), the Sobolev energy

blows up, while the TV energy [ |Du| = the perimeter of the moon, which
Q
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is finite. Therefore, in combination with the data model (4), the variational
TV inpainting model is to minimize

E@MmJﬂ:aLNDm+AA¥Ku—wVwL (5)

The admissible space is BV(f2), the Banach space of all functions with
bounded variation [31]. We observe that it is very similar to the celebrated
TV restoration model of Rudin, Osher, and Fatemi [43]. In fact, the beauty
and power exactly lie in that the model provides a unified framework for
denoising, deblurring, and image reconstruction from incomplete data. Fig-
ure 1 displays the computational output of the model as applied to the error
concealment of a blurry image with simulated random packet loss due to the
transmission failure of a network.

A blurred image with 80 lost packets Deblurring and error concealment by TV inpainting

Figure 1: TV inpainting for the error concealment of a blurry image.

The second well-known prior model is Mumford-Shah’s object-edge model [39].
Unlike TV, the edge set I' is now explicitly singled out, and an image w is
understood as the combination of both the geometric feature I and the piece-
wise smooth “objects” w;’s on all the connected components €2;’s of Q \ T.
Thus in both the Bayesian and variational languages, the prior model consists
of two parts (see (3)):

p(u,T) = p(u|l)p(I')  and
Elu,T] = E[u|l + E[L].

In the Mumford-Shah model, the edge regularity is specified by E[['] =
HY(T), the 1-D Hausdorff measure, or as in most computational applica-
tions, E[I'] = length(I") assuming that I is Lipschitz. The smoothness
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of the “objects” is naturally characterized by the ordinary Sobolev norm:
Eull'] = / |Vu|?dx. Therefore, in combination with the data model (4),
Q\T

the variational inpainting model based on the Mumford-Shah prior is given
by

inf Bys[u, Tlug, D] =

6
! /Q\F \Vul?dz + BH'(T) + A /D(Ku — ug)%dz. ®)

Figure 2 shows one application of this model for text removal [28]. Note
edges are preserved and smooth regions remain smooth.

Image to be inpainted Inpainting domain (or mask) Inpainting output

Hello! We are Penguin
A and B. You guys
must think that so many
words have made a
large amount of image
information lost.

Is this true? We
disagree. We are

more optimistic. The

Figure 2: Mumford-Shah inpainting for text removal.

Numerous applications have demonstrated that, for classical applications
in denoising, deblurring or segmentation, both the TV and Mumford-Shah
models perform sufficiently well even by the high standard of human vision.
But inpainting does have its special identity. We have demonstrated in [15,
28] that for large-scale inpainting problems, high order image models which
incorporate the curvature information become necessary for more faithful
visual effects.

The key to high order geometric image models is Euler’s elastica curve
model:

e[y] = /(a—!— bk*)ds, a,b> 0,
v

where k denotes the scalar curvature. Birkhoff and de Boor [6] called it the
“nonlinear spline” model in approximation theory. It was first introduced
into computer vision by Mumford [37]. Unlike straight lines (for which b = 0),
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the elastica model allows smooth curves because of the curvature term, which
is important for computer vision and computer graphics.

By imposing the elastica energy on each individual level lines of u (at
least symbolically or by assuming that u is regular enough), we obtain the
so-called elastica image model:

zmm:[ﬂmzﬂw

= /_ i /u EA(a—i—an)dsd/\ (7)

:/(a+b/£2)\Vu\d$.
"

In the last integrand, the curvature is given by k = V - [Vu/|Vu|]. (Notice
that in the absence of the curvature term, the above formula is exactly the
co-area formula for smooth functions [31].) This elastica prior model was
first studied for inpainting by Masnou and Morel [35], and Chan, Kang, and
Shen [11], and it improves the TV inpainting model as expected.

Similarly, the Mumford-Shah image model E ¢ can also be improved by
having the length energy replaced by Euler’s elastica energy:

&@mﬂ:a/

\Vul?dz + e[l].
O\r

It was first applied to image inpainting by Esedoglu and Shen [28]. Figure 3
shows one example of applying this image prior model to the inpainting of
an occluded disk. Both the TV and Mumford-Shah inpainting models would
complete the interpolation with a straight line edge and introduce visible
corners a result. The elastica model restores the smooth boundary.

The improved performance of curvature based models comes at a price,
both in terms of theory and computation. The existence and uniqueness of
the TV and Mumford-Shah inpainting models can be studied in a fashion
similar to the classical restoration and segmentation problems. But theo-
retical study on the high order models is only in the very beginning. The
difficulty lies in the involvement of the second order geometric feature - cur-
vature, and the identification of a proper function space to study the models.
Secondly in terms of computation, the calculus of variation on the curvature
term leads to fourth-order highly nonlinear PDEs, whose fast and efficient
numerical solution imposes a tremendous challenge.
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A noisy image to be inpainted. Inpainting via Mumford-Shah~Euler image model

Figure 3: Smooth inpainting by the Mumford-Shah-Euler model.

Let us conclude this section with a brief discussion on computation, es-
pecially for the TV and Mumford-Shah inpaintings.

For the TV inpainting model E;,, the Euler-Lagrange equation is formally
(or assuming that v is in the Sobolev space Wh!) given by

-V [%] + uK*xp(Ku — ug) = 0. (8)
Here K* denotes the adjoint of the linear blurring kernel K, the multiplier
Xp(z) the indicator of D, and p = 2A\/a. The boundary condition along 02
is Neumann adiabatic, to eliminate any boundary contribution during the
integration-by-parts process. This nonlinear PDE can be solved iteratively
by the freezing technique: let u(™ denote the current inpainting at step n,
then the updated inpainting u("*Y solves the linearized PDE

[Vu(n+1)

yr * (n+1) _ —
V| } + uK*xp(Ku ug) = 0.

In practice, the intermediate diffusivity coefficient 1/|Vu(™| is often modi-
fied to 1/4/|Vu(™|? 4 €2 for some small conditioning parameter €, or by the
mandatory ceiling and flooring between € and 1/e. The convergence of such
algorithms have been well studied in the literature [9, 26]. There are also
many other techniques possible for solving (8) in the literature, for example,
see Vogel and Oman [54], and Chan, Mulet, and Golub [10]. We only need
to relate (8) to the conventional TV restoration case.

The computation of the Mumford-Shah inpainting model is also very in-
teresting. Unlike segmentation, for inpainting, one’s direct interest is only

14



in u, not I'. Such understanding makes the I'-convergence approximation

theory perfect for inpainting. According to Ambrosio and Tortorelli [1],

by introducing an edge signature function z(z) € [0,1],z € £, and hav-

ing E[ull'] = a/ |Vu|*dx replaced by Elulz] = a/ 2*|Vu|*dz, one can
o\r Q

approximate the length energy in the Mumford-Shah model by a quadratic

integral in z (up to a constant multiplier):

E.[¢] :5/9 <6‘V22‘2 4 (2 ;61)2> dz, €< 1.

Thus the Mumford-Shah inpainting model is approximated by
E Ju, z|ug, D] = E[u|z] + Ez] + AE[uo|u, D],

which is a quadratic integral in both » and z! It leads to a coupled system
of linear elliptic type of PDE’s in both u and the edge signature z, which
can be solved efficiently using any numerical elliptic solver. The example in
Figure 2 has been computed by this scheme [28].

Finally we should also mention some of the major applications of the in-
painting and geometric image interpolation models developed above. These
include digital zooming, primal-sketch based perceptual image coding, error
concealment for wireless image transmission, and progressive disocclusion in
computer vision [15]. Extensions to color or more general hyperspectral im-
ages, and nonflat image features (i.e., that live on Riemannian manifolds [14])
are also currently being studied in the literature. Other approaches to the
inpainting problem can be found in [3, 5, 8]. In particular, it has been just
recently pointed out in [4] that the PDE inpainting model in [5] is closely
related to the stream function-vorticity equation in fluid dynamics.

3 Variational Level Set Image Segmentation

Images are the proper 2-D projections of the 3-D world containing various
objects. To successfully reconstruct the 3-D world, or at least approximately,
the first crucial step is to identify the regions in images that correspond to
individual objects. This is the well known problem of image segmentation.
It has broad applications in a variety of important fields such as computer
vision and medical image processing.
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Denote by uy an observed image on a 2-D Lipschitz open and bounded
domain €). Segmentation is to find a visually meaningful edge set I" which
leads to a complete partition of 2. Each connected component ; of Q\ T’
should correspond to at most one real physical object or pattern in our 3-D
world, for example, the white matter in brain images or the abnormal tissues
in organs. In some applications, one is also interested in the clean image
patches u; on each €2; of the segmentation, since ug is often noisy.

Therefore, there are two crucial ingredients in the mathematical modeling
and computation of the segmentation problem. The first is how to formulate
a model that appropriately combines the effects of both the edge set I" and
its segmented regions {Q;,7 = 1,2,---}. And the other is to find the most
efficient way to represent the geometry of both the edge set and the regions,
and to represent the segmentation model as a result. This of course reflects
the general philosophy in the introduction section.

In the variational PDE approach, these two issues have found good an-
swers in the literature. For the first, one observes the celebrated segmenta-
tion model of Mumford and Shah [39], and the second, the level set repre-
sentation technology of Osher and Sethian [40]. In what follows, we detail
our recent efforts in advancing the application of the level set technology
to various Mumford-Shah related image segmentation models. Much of the
works can be found in our papers [19, 20, 22, 21, 53|, and also in the related
works [52, 55, 41, 44, 58].

We start with a novel active contour model whose formulation is inde-
pendent of intensity edges defined by the gradients, in contrast to most con-
ventional ones in the literature. We then explain how this model can be effi-
ciently computed based on the multi-phase level set method. In the second
part, we extend these results to the level set formulation and computation
of the general Mumford-Shah segmentation model for piecewise smooth im-
ages. In the last part, we present our recent work on extending the previous
models to the logical operations on multi-channel image objects.

3.1 Active contours without edges and multi-phase level
sets

Active contour is a powerful tool in image and vision analysis for boundary
detection and object segmentation. The key idea is to evolve a curve so that
it eventually stops along the object edges of the given image ug. The curve
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evolution is controlled by two sorts of energies: the internal energy which
defines the regularity of the curve, and the external one determined by the
given image ug. The latter is often called the feature-driven energy.

In almost all classical active contour models, the feature-driven energies
rely heavily on the gradient feature [Vug| or its smoothed version |VG, *ug|,
where G, denotes a Gaussian kernel with a small variance 0. They work
well for detecting gradient-defined edges, but fail for more general classes of
edges, such as the boundary of a nebula in some astronomic images or the
top image in Figure 4.

Our new model — active contours without edges, first introduced in [19, 20],
is formulated independent of the gradient information, and therefore can
handle more general types of edges. The model is to minimize the energy

E2[01,C2,F\U0] Z/

int(T")

\uo(x)—cl\de+/ o) — ealPdz + [T, (9)

ext(T")

where v > 0, and int(I') and ext(I") denote the interior and exterior of I', and
IT'| its length. The subscript 2 in F, indicates that it deals with two-phase
images, i.e., ones whose “objects” can be completely indexed by the interior
and exterior of I'.

In the level set formulation of Osher and Sethian [40], I is embedded as
the zero level set {¢ = 0} of a Lipschitz continuous function ¢ : Q@ — IR.
Consequently, {¢ > 0} and {¢ < 0} define the interior Q" and exterior Q™ of
the curve. (Computationally, the level set approach is superior to other curve
representations in both letting one directly work on a fixed rectangular grid
and allowing automatic topological changes such as merging and breaking.)
Denote by H the 1-dimensional Heaviside function: H(z) =1if z > 0 and 0
if z < 0. Then the energy in our model becomes

Escy, ¢, plug) = /

Q

[uo(z) — es|*H(¢)dz + / [uo() — eo*(1 — H(¢))dz

Q

+ Z//Q\VH(gb)\dx.

Minimizing Fs[cq, ca, ¢|ug] with respect to ¢i, ¢ and ¢ leads to the Euler-
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Lagrange equation:

2—? [I/dlv (

) lug — c1* + Jug — ¢ }

e o) = o0~ HG s
o) = 2 s 0= = s

with a suitable initial guess ¢(0, ) = ¢o(z). In numerical 1mplementations,
the Heaviside function H(z) is often regularized by some H.(z) in C'(IR), so
that as ¢ — 0, the latter converges to H(z) in some suitable sense. As a result,
the Dirac function 6(z) in the last equation is regularized to d.(z) = H.(%).
We have discovered in [20] that a carefully designed approximation scheme
can even allow interior contours to emerge, which has been a challenging task
for most conventional algorithms. Also notice that the length term in the
energy has led to the mean curvature motion.

The model performs as an active contour in the class of piecewise constant
images taking only two values, looking for a two-phase segmentation of a
given image. The internal energy is defined by the length, while the external
energy is independent of the gradient |Vug|. Defining the segmented image
by u(z) = e H(p(x)) + co(1 — H(¢(x))), we realize that the energy model is
exactly the Mumford-Shah segmentation model [39] restricted to the class of
piecewise constant images. However, our model was initially developed from
the active contour point of view.

Two typical numerical outputs of the model are displayed in Figure 4. The
top row shows that our model can segment and detect objects without clear
gradient edges. The bottom one shows that it can also capture complicated
boundaries and interior contours.

For more complicated situations where multiple objects occlude each
other and multi-phase edges such as T-junctions emerge, the above two-
phase active contour model becomes insufficient and we need to introduce
more than one level set functions. In [22, 53], we generalize the above frame-
work to multi-phase active contours, or equivalently, the piecewise constant
Mumford-Shah segmentation with multi-phase regions:

: _ L2
inf Epns[u, T[] = Z/ﬂ lup — ¢;|2dx + v|T). (10)

Here, €2;’s denote the connected components of Q\ I', and v = ¢; on ;.
Notice that I' can now be a general set of edge curves, including for example
the T-junction class.
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Figure 4: Top: detection of a simulated minefield by our new active contour
model. Bottom: segmentation of an MRI brain image. Notice that the
interior boundaries are automatically detected.

Generally, consider m level set functions ¢; : 0 — IR. The union of
the zero-level sets of ¢; represents the edges in the segmented image. Using
these m level set functions, one can define up to n = 2™ phases, which form a
disjoint and complete partitioning of 2. Therefore, each point x € {2 belongs
to one and only one phase. In particular, there is no vacuum or overlap among
the phases. This is an important advantage, compared with the classical
multi-phase representation in [44, 56|, where a level set function is associated
to each phase, and therefore more level set functions are needed. Figure
5 shows two typical examples of multi-phase partitioning corresponding to
m = 2 and 3.

We now illustrate the multi-phase level set approach through the example
of n =4 and m = 2. Let ¢ = (¢c11, €10, Co1, Coo) denote a constant vector, and
& = (¢1, ¢2) the two-phase level set vector. Then we are looking for an ideal
image v in the form of

u = c11H(¢1)H(p2) + croH (¢1)(1 — H(2))
+co1(1 — H(¢1))H(d2) + coo(1 — H(¢1))(1 — H(2)).
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Figure 5: Left: two curves given by ¢; = 0 and ¢5 = 0, partition the domain
into four regions based on indicator vector (sign(¢;), sign(¢9)). Right: Three
curves given by ¢; = 0, ¢ = 0, and ¢3 = 0, partition the domain into eight
regions based on the triple (sign(¢;), sign(ds), sign(¢s)).

The Mumford-Shah segmentation energy becomes
Bile,®lun] = [ Jun(e) = cu H (o) () e
+ [ Juo(a) = e H(60)(1 = H(6a))da
+ [ uoa) = (1 = H@) H () (11)
+ | o) — canl*(1 = H(80)(1 — H(go))da
-H//Q |VH(¢1)|dx + l//Q |V H (p9)l|dz.

Its minimization leads to the Fuler-Lagrange equations. First, with ® fixed,
the ¢ minimizer can be explicitly worked out as before:

cij(t) = average of ug on {(2i — 1)¢1 >0, (25 —1)¢2 >0} 4,5 =0,1.

In return, this new ¢ information leads to the Euler-Lagrange equations for
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% = 5(¢1) [l/div( ‘gzh) - ((Uo — 011)2 - (UO - 001)2>H(¢2)
- ((Uo —c10)” = (uo — 000)2) (1- H(¢2))]’
% = 6(¢o) [l/diV( ‘gzzo - ((Uo - 011)2 — (uo — 001)2>H(¢1)

— (g = €10)? = (w0 — cw0)? ) (1 = H(#1))].

Note that the equations are governed by both the mean curvatures and jumps
of the data energy terms across the boundary.

Figure 6 shows an application of the model to the medical analysis of a
brain image. Displayed are the final segmented image and its associated four
phases. Our model successfully identifies and segments the white and gray
matters.

Recently the above models and algorithms have been extended to multi-
channel, volumetric, and texture images in [12, 13, 46]. Let us give a little
more details about texture segmentation from [46]. Texture images refer to
general images of natural scenes, such as grasslands, beaches, rocks, moun-
tains, and human body tissues. They typically carry certain coherent struc-
tures in scales, orientations, and local frequencies. To segment texture images
using the above models, we first apply Gabor’s filters to extract these coher-
ent structures. The filter responses create a new vectorial (or multi-channel)
feature image in the form of U(x) = (ua(z),up(x),- - ,u,(x)), where the
Greek letters stand for the filter signatures and typically each takes a value
of (scale, orientation, local frequency). We then apply the vectorial active-
contour-without-edges model to the segmentation of U. Figure 7 shows one
typical example.

3.2 Piecewise smooth Mumford-Shah segmentation

The most general Mumford-Shah piecewise smooth segmentation [39] is de-
fined by

inf Fyslu, Tug] = / \U—Uo\2d$+u/ |Vul?dz + v|T|, (12)
u,l’ 9) O\l
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Figure 6: The original and segmented images (top row), and the final four
segments (the rest).
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Figure 7: An example of texturesegmentation (at increasing times).

where p, v are positive parameters. It allows the segmented “objects” to have
smoothly varying intensities, instead of being strictly constant. We now show
how to carry out the model based on the multi-phase level set approach [20].
As before, we start with the two-phase situation where a single level set
function ¢ is sufficient, followed by the more general multi-phase case.

In the two-phase situation, the ideal image u is segmented to u® by the
level set function ¢:

u(z) = u'(2)H($(x)) + u” (z)(1 — H(¢(2)))-

We assume that both u™ and v~ are C' functions up to the boundary {¢ =
0}. Substituting this expression into (12), we obtain

Elu*,u, éluc) = / u* — uoPH($)da + / ™ — w1 — H($))dz
u / Vut PH(6))dz + / Vu 21— H($))dz + v / VH(g). (13)

First with ¢ fixed, the variation on E[u™, u~, ¢|ug] leads to the two Euler-
Lagrange equations for u* separately:

+
ut —uy = pAu* on + ¢ >0, %:Oon{qb:O}. (14)

(Here + takes either + or —, but uniformly across the formula.) They act
as the denoising operators on the homogeneous regions only. Notice that no
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smoothing is done across the boundary {¢ = 0}, which is very important in
image analysis.

Next, keeping the functions v and v~ fixed, and minimizing E[u™, u™, @|uo]
with respect to ¢, we obtain the motion of the zero level set:

06 _ vo

= = 3(0) [uww

)= (Jut = ol + p Va2 = u” — ol = pVu [3)]
with some initial guess ¢(¢t = 0,z). The above equation is actually computed
at least near a narrow band of the zero level set. As a result, computa-
tionally, we have to continuously extend both u* and u~ from their original
domains {£+¢ > 0} to a suitable neighborhood of the zero level set {¢ = 0}.
Figure 8 displays an application of the model in astronomical image analysis.
Although the nebula itself does not seem to be a smooth object, the piesewise
smooth model can still correctly capture all the main features.

Figure 8: Numerical result from the piecewise smooth Mumford-Shah level
set algorithm with one level set function.

As in the previous section, there are cases where the boundaries forming
a complete partition of the image cannot be represented by a single level set
function. Then one has to turn to the multi-phase approach. In our papers,
thanks to the planer Four Color Theorem, we have been able to conclude that
two level set functions are sufficient for any multi-phase partition problems.
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By the Four Color Theorem, one can color all the regions in a partition
using only four colors, so that any two adjacent regions are color distinguish-
able. Identifying a phase with one color, we see that two level set functions
¢1 and ¢ are sufficient to produce four “colors:” {£+¢; > 0,+¢s > 0}.
Therefore, they can completely segment a general image with a multi-phase
boundary set I' given by {¢; = 0} or {¢o = 0}. As before, we do not have
the problems of “overlapping” or “vacuum” as in [56, 44]. Note that by this
formulation, generally each “color” can still have many isolated components.
Therefore, the segmentation is complete only after one applies an extra step
of the well known topological processor for finding the connected components
of an open set.

In this four-phase formulation, the ideal image u is segmented into four
disjoint but complete parts u**, each defined by one of the four phases:

{i¢1 >0, £¢q > 0}

Overall, by using the Heaviside function, we obtain the following synthesis
formula:

u=u""H(¢:1)H(d2) +ut H(¢:)(1— H(¢2))
+u=t(1 = H(¢1))H(do) +u~~(1— H(¢1))(1 — H(¢)),

for all x € 2. We can express in a similar way the energy function of u and
® = (¢1, ¢2), and derive the corresponding Euler-Lagrange equations.

Notice the remarkable feature of this single model, which includes both
the original energy formulation and the elliptic and evolutionary PDEs: it
naturally combines all the three image processors — active contour, segmen-
tation, and denoising.

3.3 Logic operators for multi-channel image segmen-
tation

In a multi-channel image u(x) = (u1(x), us(z), -+ ,uy(x)), a single physical
object can leave different traces in different channels. For example, Figure 9
shows a two-channel image containing a triangle which is however incomplete
in each individual channel. For this example, most conventional segmentation
models for multi-channel images [12, 13, 32, 47, 49, 58] would output the
complete triangle, i.e., the union of both channels. The union is just one of
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'\ A

Figure 9: A synthetic example of an object in two different channels. Notice
that the lower left corner of A; and the upper corner of A, are missing.

the several possible logical operations for multi-channel images. For example,
the intersection and the differentiation are also very common in applications,
as illustrated in Figure 10.

In this section, we outline our recent efforts in developing logical segmen-
tation schemes for multi-channel images based on the active-contour-without-
edges model [45].

AUA,  ANA,  AN-A,

A a ‘

Figure 10: Different logical combinations for the sample image: the union,
the intersection, and the differentiation.

First, we define two logical variables to encode the information inside and
outside the contour I' separately for each channel i:

o 1 if z is inside I" and not on the object
n(, 1t _ )
& (ug, 2, T) = { 0 otherwise;

; 1 if z is outside I" and on the object
out(, 1 _ )
@ (g, o, ) = { 0 otherwise.

Such different treatments are motivated by the energy minimization formu-
lation. Intuitively speaking, in order for the active coutour I' to evolve and
eventually capture the exact boundary of the targeted logical object, the en-
ergy should be designed so that both partial capture and over capture lead
to high energies (corresponding to 2¢“* = 1 and z/" = 1 separately). Imagine
that the target object is the tumor tissue, then in terms of decision theory,
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Truth table for the two-channel case

Zin Zén ZfUt ZgUt Al U A2 Al N A2 Al N _|A2
2 inside I’ 1 1 0 0 1 1 1
(forzeQt) |1 |0 |0 0 0 1 1

0 1 0 0 0 1 0

0 0 0 0 0 0 1
zoutside I' || 0 0 1 1 1 1 0
(orzeQ )0 |0 |1 0 1 0 1

0 0 0 1 1 0 0

0 0 0 0 0 0 0

Table 2: The truth table for two channels. Notice that inside I' “true” is
represented by 0. It is so designed to encourage the contour to enclose the
targeted logical object at a lower energy cost.

over and partial captures correspond to false alarms and misses separately.
Both are to be penalized.

In practice, we do not have the precise information of “the object,” which
is exactly to be segmented. One possible way to approximate 2" and 22 is
based on the interior (Q2*) and exterior (£2~) averages ¢ in channel i:

i () _ o2
Zz?n(u%)axa F) = |u0($) ; G | Fio for x S Q+,
maxyeq+ [Ug(y) — ¢ ?
i () 2
22 (up, z,T) = (@) = i | forx € Q.

maxyeq- [ug(y) —¢; [*

The desired truth table can then be described using the z/™’s and z{“'’s.
In Table 2, we have shown three examples of logical operations for the two-
channel case. Notice that “true” is represented by 0 inside I'. It is so designed
to encourage energy minimization when the contour tries to capture the
targeted object inside.

We then design continuous objective functions to smoothly interpolate
the binary truth table. This is because in practice, as mentioned above, the
z’s are approximated and take continuous values. For example, the possible
interpolants for the union and intersection can be:

faan(@) = 2" (2)28"(2) + (1 = V(1 = 27" (2)) (1 — 258(2))),
farna(x) = 1= \/(1 — 2" (2))(1 — 2 (x)) + v 2" (2) 25" ().
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The square roots are taken to keep them of the same order as the original
scalar models. It is straightforward to extend the two-channel case to more
general n-channel ones.

The energy functional E for the logical objective function f can be ex-
pressed by the level set function ¢. Generally, as just shown above, the
objective function can be separated into two parts,

f = f(zjzlna Zimt: U 72:?7 Z;]LUt) = fm(zina o 7Z:Ln) + fout(zimta Tt ZZUt)'
The energy functional is then defined by

E[p|c*,c"] = plength(¢ = 0) + )\/Q [fin(Z", -+, 2V H (¢)
+fout(zfma e aZZUt)(l - H(¢))] dzx.

Here each ¢t = (cf,-- -, ¢F) is in fact a multi-channel vector. The associated
Euler-Lagrange equation is similar to the scalar model:
9¢

E 5(¢) [Ndiv(—¢> —A (fzn(zina T ’Z;zn) - fout(zfmﬂ e aZZut)) } )
with suitable boundary conditions as before. Even though the form often
looks complicated for a typical application, its implementation is very similar
to that of the scalar model.

Numerical results support our above efforts. Figure 9 shows two different
occlusions of a triangle. We are able to successfully recover the union, the
intersection, and the differentiation of the objects in Figure 10 using our
model. In Figure 11, we have a two-channel image of the brain. In one we
have a “tumor” with some noise, while the other is clear. The images are
not registered. We want to find A; N—A5 so that the tumor can be observed.
This happens to be a very complicated example as there are a lot of features
and textures. However the model finds the tumor successfully.

4 Conclusion
In this article, we have discussed some recent developments in one successful

approach to mathematical image and vision analysis — the variational PDE
method. Besides inpainting and segmentation discussed here, some other
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Channel A; Initial Contour Final Contour

i

Final Contour

Figure 11: Region based logical model on a medical image. In the first
channel A;, the noisy image has a “brain tumor”, while channel A5 does not.
The goal is to spot the tumor that is in channel A;, but not in Ay, i.e., the
differentiation A; N—A,. In the right column, we observe that the tumor has
been successfully captured.

problems for which this method is well suited are adaptive image enhance-
ment and the scale-space theory, geometric processing of curves and surfaces,
optical flows of motion pictures, and dynamic object tracking. Advantages
of the method include faithful modeling and processing of vision geometry
and its related visual optimization, effective simulation of dynamic visual
processes such as selective diffusion and information transport, and close in-
teraction with the rich literature of numerical analysis and computational
PDEs. This subject shows that mathematics has a key role to play in ad-
dressing real-world problems in science and technology. Some challenges for
the future are further theoretical study on the variational and PDE models
developed in recent years, more intrinsic integration with stochastic modeling
and applied harmonic analysis such as geometric wavelets, and more system-
atic investigation on the computation and numerical analysis of geometry
based variational optimizations and PDEs.
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